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Abstract-—This paper discusses the analytical conditions under which a pin-jointed assembly,
which has s independent states of sclf-stress and m independent mechanisms, tightens up when its
mechanisms are excited. A matrix algorithm is set up to distinguish between first-order infinitesimal
mechanisms (which are associated with second-order changes of bar length) and higher-order
infinitesimal or finite mechanisms. It is shown that. in general, this analysis requires the computation
of s quadratic forms in m variables, which can be eusily computed from the states of self-stress and
mechanisms of the assembly. It any linear combination of these quadratic forms is sign definite,
then the mechanisms are first-order infinitesimal. An efficient and general algorithm to investigate
these quadratic forms is given. The calculations required are illustrated for some simple examples.

Maay assemblies of practical relevance admit a single state of self-stress (s = 1), and in this
case the algorithm proposed is straightforward to implement.

This work is relevant to the analysis and design of pre-stressed mechanisms, such as cable
systems and tensegrity frameworks.

L. INTRODUCTION

Asscmblics of pin-jointed bars exhibit a wide range of mechanical phenomena. Such
assemblies are generally described geometrically in terms of the numbers of bars and joints ;
but their mechanical performance can only be understood properly in terms of the numbers
of inextensional mechanisms, m (2 0) and of states of self-stress, s (2 0). For a given
assembly, the values of mand s may be determined by Lincar Algebra techniques from the
equilibrium matrix sct up in the initial configuration.

In many practical cases the structural engineer will want to avoid assemblies with
m > 0, since they will not be rigid ; and thus if a proposed assembly turns out to have m > 0
it will be re-designed in order to make i = 0. Increasingly, however, engineers arc becoming
interested in pre-stressed mechanisms such as cable-nets and tensegrities ; these assemblies
have m > 0, but also s > 0. There are well-known examples in which the activation—by
means of, ¢.g. a turnbuckle —of the single state of self-stress in an assembly having s = |
stitfens, or stabilizes, all of the independent mechanisms m > 0 (Calladine, 1978).

The simplest example of such an assembly is shown in Fig. 1a. As in all of thc examples
in the present paper, all bars and joints are constrained to lie in a plane. The matrix-algebra

’2 b)

Fig. 1. (1) Planar assembly with j = 4 (only unconstrained nodes have numbers in the figure),

k=4 and b = 3. The vector of axial forces is t = 1, t, ,]7; the vector of nodal components of

displacement is d = [d,, d,, d;, d]". As shown in Section 4 of our previous paper, this assembly

has s = | and m = 2. (b) Shows the two incxtensional mechanisms and the corresponding product
forces associated with them.
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Fig. 2. Planar assembly with j = 4, k = 4 and & = 3. This assembly has s = 0 and m = 1 ; clearly its
mechanism is finite.

tests described by Pellegrino and Calladine (1986) give m = 2. 5 = 1 for this assembly ; and
it may readily be seen that an in-line pretension in all three bars imparts some first-order
stiffness to the two independent mechanisms. In contrast the assembly of Fig. 2 has m = [,
s = 0, and the single mechanism preserves its freedom even for large angular displacements:
it is therefore a finite mechanism. The assembly of Fig. la is obviously not a finite mech-
anism: even if pre-stress is not activated in the initial configuration, the assembly tightens
up when its mechanisms are exercised.

Many assemblies with m > 0, s > 0 tighten up after a small “inextensional” displace-
ment. Indeed, Mobius (1837) and Maxwell (1864) knew that in general a pin-jointed
assembly consisting of j joints requires at least 2j—3 bars to make it stiff, but a lower
number of bars may be sufficient if at least one bar has maximum, or minimum, length.
The stiffness of such special assemblies, Maxwell warned, is “of an inferior order. ... a small
disturbing force may produce a displacement infinite in comparison to itself™. Mohr (1885),
Foppl (1912), Kotter (1912) and subscquently Pollaczek-Geiringer (1927) were interested
in the detection of these special cases. It is obviously desirable for the engineer to be able
to identify a given asssembly as having a finite mechanism, as distinct from one which
tightens up as its mechanisms are mobilized.

In Pellegrino and Calladine (1986, which we shall refer to heneeforth as “our previous
paper’™) we made some progress in devising algorithms which can discriminate between
these various situations in a given pin-jointed assembly. Thus we showed that, given an
assembly withm > Oand s > 0, if a state of self-stress can impart positive first-order stiffness
to every mechanism, then the mechanisms are first-order infinitesimal, i.c. they are associated
with second-order changes of bar lengths. If on the other hand there are some mechanisms
which cannot be stabilised by a state of self-stress, these mechanisms are second-order
infinitesimal (at least), i.e. they are associated with third-order (or higher) length changes,
or are finite.

Recently, in an article in the Journal of Applied Mechanics, Kuznetsov (1989) attacked
some aspects of our work. Kuznetsov’s comments have stimulated our thinking, and the
present note describes some recent advances which we have made.

We shall be concerned entirely with discriminating between first-order infinitesimal
mechanisms and all other types, which for the sake of compactness we shall refer to as
“finite” mechanisms. We shall not consider further questions of detection of higher-order
mechanisms, which have been discussed by Koiter (1984), Pellegrino (1986) and Kuznetsov
(1988).

Given a pin-jointed assembly, the first stage of the matrix algorithm described in
our previous paper is to compute s independent states of self-stress and m independent
inextensional mechanisms. This analysis is conducted within the context of a small-deflection
theory and hence all that we know about mechanisms computed in this way is that they
cause no first-order changes in length of the bars. In this paper we are concerned only with
assemblies for which s > 0and m > 0.

A state of self-stress is then imposed onto the assembly, and the second stage of the
algorithm is to compute, for each mechanism, the sct of out-of-balance nodal forces
which are required to restore equilibrium, after imparting a unit magnitude of the chosen
mechanism. A total of m product forces are obtained in this way.

The third stage is to assemble and analyse a modified equilibrium matrix, which gives
the response of the assembly to arbitrary external loads (Pellegrino and Calladine, 1984;
Pellegrino, 1988). If this matrix has full rank, then the mechanisms are first-order infini-
tesimal: however this calculation must be supplemented by a sign check that the scalar
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Fig. 3. Planar assembly with j = 4. k = 4 and b = 3; see caption of Fig. la for details of t.d.

product of all mechanisms with the corresponding product forces is always a positive
number, which is the case if all inextensional deformations are stable. In more precise terms,
the condition that the rank of the modified equilibrium matrix should be full is necessary,
but not sufficient, for first-order infinitesimal mechanisms.

In relatively simple examples. such as those shown in Figs la and 3. it is easy to spot
whether any mechanisms exist for which the sign check would not be satisfied. However—
and this is the esssence of Kuznetsov's criticism of our previous work —any assembly with
two or more independent mechanisms and also. possibly, more than one independent state
of self-stress, warrants a more formal procedure.

In the present paper we address the question of computing the sign of the scalar
product of every possible product force and its corresponding mechanism. This approach
produces a quadratic form, which must be tested for sign definiteness. The computations
are straightforward in the case of assemblies having a single state of self-stress, and indeed
all of the examples previously discussed in the literature are of this kind. On the other hand,
if there are several independent states of self-stress we have to deal with a linear combination
of quadratic forms: we shail explain how to do this, and we shall give examples. We shall
also point out in Section 5 how the present work is related to that of previous authors, and
in particular to an carly study by Katter (1912).

2. SELF-STRESSING FOR POSITIVE STIFFNESS

Let us consider a planar pin-jointed assembly which consists of j juints, connected by
a total of k kinematic constraints 10 a rigid foundation, and b bars. Let t be a b-dimensional
vector of bar axial forces and let d be a (2 —k)-dimensional vector of nodal displacement
components.

We compute a set of independent states of self-stress t. t,. . ... t, following the pro-
cedure described in Section 2 of our previous paper. Clearly, any linear combination of
these states of self-stress is still self-equilibrated, hence the most general self-stress state is
given by :

tlal+t212+'”+tsan (l)

where the scalar coeflicients 2, ..., 2, are free to take any real value. We also compute a
set of independent inextensional mechanisms for the assembly: d,. d,, ..., d,,. Assuming,
for the suke of simplicity, that the kinematic constraints suppress all rigid-body displace-
ments, and therefore that all vectors d, represent internal mechanisms, we can similarly
express the most general internal mechanism as:

dlljl +dlljl 4+ dml‘m (2)

where the scalar coeflicients ..., fl, can again take arbitrary values. From now on, it
will be convenient to write eqn (2) in the form D@, having introduced a (2j—k)xm
matrix D, whose columns are the m inextensional mechanisms, and 8 is the column vector
Broeo Bal.

We begin by considering an assembly which has an arbitrary number of mechanisms
m > 0, but only one state of self-stress s = 1. Let us give the assembly the state of self-stress
t =t,, and then impose a small inextensional displacement. The self-stressing tensions
remain—to the first-order—unchanged. but they are no longer self-equilibrated because
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of configuration change. Let p,, be the (2 —k)-dimensional vector of product forces, which
are required to restore nodal equilibrium of the assembly carrying the axial forces t = t,,
after a umit amplitude of mechanism d, has been imposed. Detailed formulae for the
components of p,, can be found in our previous paper. The vector of product forces
associated with the general mechanism (2) is

PB=puBi+pi:B:+ " +PimPm. 3)

where the (2j—k) x m matrix P, contains the product-force vectors arranged by columns.
The subscript | is a reminder that the state of self-stress t, has been imposed. As explained
in Section 1, our test for first-order infinitesimal mechanisms is that, as a result of the self-
stress t. all mechanisms are endowed with positive stiffness. To ensure this, we check that
the scalar product of a general inextensional mechanism Df and the corresponding product-
force vector P\B is positive for all Bs:

BPDB>0. VBeA"—0. 4)

Since the m x m matrix Q, = P{D is symmetric (this property is not immediately obvious,
but can be verified by substituting expressions for all product forces given in our previous
paper. and then doing the matrix multiplication), our test is equivalent to showing that the
quadratic form B QB is positive definite. This can be done by any of several techniques
available in the literature, see e.g. Strang (1980). In Scctions 3 and 4 we shall make usc of
the following two alternative necessary and suflicient conditions for positive definiteness of
a symmetric matrix Q,:

(1) the pivots obtiined when a Gaussian elimination is performed on Q, are all
positive ;
(ii) the eigenvalues of Q, are all positive.

Clearly, if Q, turned out according to this procedure to be regative definite, then a
positive definite quadratic form would correspond to the self-stress t = —t, ; in cither case
the given assembly is a first-order infinitesimal mechanism. In all other cases the assembly
is a "finite” mechanism,

For assemblies with s > 1, greater freedom is available when choosing the initial state
of self-stress t. Of course, any chosen set of coeflicients a, defines, through eqn (1), a unique
state of self-stress, and then we could perform the foregoing analysis for that particular t.
Then, if the quadratic form Q corresponding to t is positive (or, indeed. negative) definite,
our test has succeeded. It could be shown that the approaches of Kuznetsov (1975a),
Besseling (1979). and Tanaka and Hangai (1986) arc essentially equivalent to following
this line. Clearly, if the form Q obtained in this way for a given t is not sign definite, it
cannot be excluded that a different choice of «, in egn (1) would produce a positive definite
Q: in which case the assembly is first-order infinitesimal. This difliculty highlights the need
for a more general procedure which includes afl possible states of self-stress and the
corresponding quadratic forms. The remainder of this section develops the rather simple
“theory™ required for such a general approach.

We need to introduce the product-force vector for the general state of self-stress in
eqn (1), and for the mechanism DB. Because the expressions for the product forces in our
previous paper are lincar in the stress terms, the product-force vector due to a linear
combination of some basic states of self-stress t, and the mechanism Dg, is equal to a linear
combination of the product-force vectors associated with each t, separately. In symbols,
the product-force vector corresponding to eqn (1) and to the inextensional displacement
Dp can be written in the form:
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(Z’: P,z,)p. (5)

Here, the (2j—k) x m matrix P, contains the m product-force vectors for the self-stress
t = t,, and for the inextensional displacements d,.....d,. [n analogy with eqn (4). our test
for positive stiffness against a general inextensional displacement D becomes :

p’(i P,.’Dz,.)p>0. VBeAR" -0 (6)

i=1

for at least one set of %,. The above test is equivalent to checking for the existence of at
least one linear combination of the matrices Q, = P/D.....Q, = P/D, all symmetric and
of size m x m, which is positive definite. In the next section we present some examples for
which the properties of the matrix:

Q= Z Q. N

can be determined easily. Then, in Scction 4 we describe a general way to analyze Q.

3. EXAMPLES

In this section we shall consider several applications of the theory developed in Section
2. Figure la shows a three-bar assembly with s = 1 state of self-stress, ¢, = [1 1 1]7 and
m =2 inextensional mechanisms d, =[0 1 0 0]", d,=[0 0 0 1]". The corresponding
product force vectors, shown in Fig. 1b, are p,, =[02 0 —1}". p.=[0 -1 0 2]". All
these values can be verified by inspection, but a more formal derivation can be found in
our previous paper. We assemble the matrices D and Py, which contain, respectively, the
two mechanisms and the product-foree vectors corresponding to those mechanisms (and
to the self-stress t = t) :

SO -

and form the symmetric matrix:

, 2 -1
Q|=P|D= —1 5|

[tis casy to verify that positive pivots arc obtiined when a Gaussian elimination is performed
on Q, ; thercfore the test (4) is satisfied. Thus, the assembly of Fig. | has been shown to be
a first-order infinitesimal mechanism.

Figure 3 shows another assembly consisting of three collinear bars, but now the bar
lengths are no longer equal and. rather more importantly, the “direction™ of the last bar
has been reversed. This example still has s = | state of self-stresst, = [1 | —1]7;itsm =2
mechanisms have components identicai to the first example. The matrices D and P, for this
assembly are:
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Fig. 4. Assembly consisting of two simple units, bars 1. 2. 3 and 4. §, 6, which are identical to the

assembly of Fig. 1. Bar 7 links the two units, thus suppressing one of the 2+2 = 4 independent

mechanisms resulting from Fig. |. The eight-dimensional vector d and the seven-dimensional vector
t are defined by analogy with the caption of Fig. la.

00 0 0
1t o N
D=l ol P={% o I
0 1 -1 12

which yield
. 32 —1
Q‘=P‘D=[—| 1/2]‘

A Gaussian elimination on the matrix Q, produces the pivots 3/2 and — 1/6. and hence Q,
is sign indcfinite. We therefore conclude that the assembly of Fig. 3 is a **finite™ mechanism.

The above examples have been analyzed by Kuznetsov (1975a) by a rather different
method, which involves the first- and second-order derivatives of the constraint equations
enforced by cach bar. It is interesting to note that, in spite of clear formal differences
between the present approach and Kuznetsov's, exactly the same quadratic forms are
obtained. The two procedures are in fact equivalent, although the introduction of product
forces enables us to avoid the complications of the standard second-order analysis, and to
implement the caleulations, instead, in terms of matrices.

The next example, shown in Fig. 4, is more complicated, and has been constructed so
as to have s > 1. [t consists of two units™, cach identical to the assembly of Fig. I, and
connected by a vertical bar. Clearly this assembly has s = 2 independent states of self-
stress:t, =[1 1 10000 ¢,=[0001 110} The components of its m = 3 mech-
anisms can be inferred from the first example, and the resulting matrix D is:

o1 006 0 00 0}
D=]0 001 000I
6 000O0T1 00

The product-force vectors corresponding to the mechanisms in D, and to the states of self-
stress t = t, and t = t,, arc respectively

0 0 01 [0 0 0]

2 -1 0 0 0 0

0 0 0 0 o0 o0

P, = -1 20 . 0o 0 0
0 00 0 0 0

0 00 0 -1 2

0 00 0o 0 0

| 0 0 0] (0 2 —1]

Hence we obtain the following two symmetric matrices, corresponding to the two distinct
states of self-stress:
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Fig. 5. Assembly consisting of two simple units linked by a bar. The first constituent unit (bars I,

2. 3) is identical to Fig. 3; the second unit (bars 4, S, 6), similar to Fig. 3, is made from bars of
different lengths.

2 -1 0 0o 0 0
Q =PD=| ~1| 2 0|, and Q,=PID=|0 2 -—1}{.
0 00 0o -1 2

Following Section 2, we now consider, eqn (7),

2 -1 0 0 0 0
Q=Qx+Q.: = —1 2 0o, +]0 2 —1{a,y,
0 00 0 -1 2

and try to find a set (x,. 2,) for which Q is positive definite. This turns out to be a particularly
casy task on this occasion: choose 2, = a; = | (i.¢. equal tensile pre-stress in cach unit)
and, by Gerschgorin's theorem (Strang, 1980). the eigenvalues of Q must lic in the interval
(1.6). and henee must be positive. We can therefore conclude that the assembly of Fig. 4
is a first-order infinitesimal mechanism.

Lastly, we consider the assembly shown in Fig. 5, which consists of two units based
on the example of Fig. 3. This assembly also has s = 2 independent states of sclf-stress
t,=[11-10000]"t,=(0001 1 —1 0]"and m = 3 mechanisms. Following the
usual procedure we caleulate the matrices Q, and Q,, and consider:

32 -1 0 32 0 —1)2
Q=[-~-1 172 0f{a,+] 0 0 0 [z,
0 0 0 =12 0 —12

In contrast to the previous example, we have been unable to spot a set of a,s for which Q
is positive definite ; we have therefore performed a Gaussian elimination on the matrix

i +ay) —ap —ay/2
Q = —a, 1|/2 0
-—a;/Z 0 —12/2

The first pivot is positive if a;+a, > 0. The second pivot is positive if a,(3ay—a,) > 0.
These two inequalitics are satisfied only by the points (a,, ;) in the region of the plane
o2, defined by x, >0 and a,> 2,/3. In this region, the third pivot is positive il
423+ 37,2, —a} < 0; however, it is easy to show that this third inequality cannot be satisfied
by any point in the region defined above. Therefore the matrix Q is sign indefinite for all
a,s. and hence the assembly of Fig. 5 is a “finite” mechanism.



s12 C. R. CaLLaDine and S. PELLEGRINO

4. AUTOMATIC SEARCH FOR A POSITIVE DEFINITE Q

The last example highlights the difficulty of using Gaussian elimination to handle
matrices of the type (7) ; even a small matrix of that type leads to complex sets of inequalities,
which may prove difficult to solve. [But we should point out that Gaussian elimination is
perfectly adequate if the linear combination (7) reduces to one matrix only. i.e. for s = 1,
and it could also be used to analyze linear combinations of s semi-definite matrices. In this
case a positive definite Q exists if and only if. the m x (s* m) adjoint matrix Q,|Q.!...1Q,
spans ", which can be checked by Gaussian elimination.]

In this section we describe a general algorithm which, after a sequence of operations,
either identifies a positive definite Q or else shows that no such combination exists.

The algorithm is based on the idea that. if a positive definite Q = Z Q. z, exists, it will

i=|

be possible to find at least one set of z;s which satisfy the # inequalities :

p_{(iQ,z,)ﬁ,>O, J=1l....n; ®)

i=1

for any given non-vanishing vectors f,€ #™. [Initially, n = m and the vectors B, coincide
with the standard basis of .#™ (Strang. 1980).] Once a set of a5 has been found. we calculate
the eigenvalues and eigenvectors of the matrix Q thus identified. The following three cases
can occur: (i) all eiyenvalues are positive, and hence Q is positive definite: or (il) some
eigenvalues are non-positive, in which case the corresponding eigenvectors are included in
the st of f, and # is increased accordingly. If, on the other hand, (iii) the ser (8) admits no
solution, we have shown that no positive definite Q exists.

In both cases (i) and (iii) we have reached a definite conclusion ; in case (i) we have
to scarch for a new sct of a8, with an enlarged sct of vectors f,. Note that the additional
incqualitics will not be satisticd by the sct of 2,8 obtained in the previous iteration, which
cosures that some progress is made in cach iteration. To maximize the improvement made
at cach stage, and thus speed up the calculations, we replace (8) with:

/’/r(i Q.%)I‘, Ze20, )

i=1

and scarch for the solution a of (9) which maximizes «. It is also convenient to introduce a
scaling condition of the type Zja,| = 1. This calculation can be done by a standard Lincar
Programming sub-routine, provided of course that the variables 2,5 are replaced by 2y non-
negative variables or, more efficiently, using the Revised Simplex algorithm.,

To find a positive definite Q our algorithm performs a series of iterations. Each iteration
requires the solution of a Lincar Programming problem —based on (9) —with an ever
increasing number of incqualities, followed by a calculation of cigenvalues and eigenvectors
of the matrix Q defined by the solution of the L.P. The algorithm converges when cither
all eigenvalues of Q are positive [case (i)]. or when the L.P. has no feasible solution [case
(ii1)]. Otherwise {case (ii)] a new iteration is required.

When our algorithm is applied to the matrix Q obtained for the assembly of Fig. 5, at
the start there are n = m = 3 incqualities plus the scaling condition, and the variables are
a,. 2, and & Iterations one and two yield the optimal solutions 2, = 0.5714, x, = —0.4286
(¢ =0.2143), and 2, = 0.9547, 2, = —0.0453 (¢ = 0.0227). respectively. Both these solu-
tions correspond to matrices Q with one negative eigenvatue. and yiclding an additional
inequality at each iteration. The third iteration, with n = 5, finds no feasible solution. This
result is in agreement with the analysis in Section 3 ; but has been obtained by an algorithm
which is easy to implement on a digital computer.

Finally. it should be noted that, as for many cutting plane algorithms, it is not possible
lo show that the above scheme will converge in a finite number of steps. although usually
the performance of such algorithms is satisfactory (Luenberger, 1984).
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5. BRIEF REVIEW OF PREVIOUS WORK. DISCUSSION

A rather unusual aspect of our work has been the rediscovery of an early paper by
Kotter (1912) which presents the first analytical method to check whether a pin-jointed
framework. which has both s > 0 and m > 0, is “rigid”, by which Kotter meant that its
mechanisms are first-order infinitesimal. “‘according to the general rules of the calculus of
variations™. Kotter studied a general three-dimensional pin-jointed assembly and, building
on previous work by Mohr and Féppl. based his analysis on the function

b
Z [—’ X=X+ (¥e=y) +(c,~z) =] (10)

Here /, is the length of bar p. connecting joint ¢ = (x,.v,.z2,) to joint r = (x,.},.Z,). when
the assembly is in its initial configuration; ¢, is the axial force in the bar. For small
configuration changes, (10) is proportional to the strain energy stored in the assembly. By
differentiating @ w.r.t. the nodal coordinates. a set of nodal equilibrium equations are
obtained and. in absence of external loads. sets of self-equilibrating bar forces can be
computed from them. Kétter (1912, Section 4) shows that ““rigid ™" assemblies are those for
which 3°® is either always positive, or always negative, and also that only inextensional
displacements, that is s “variables™ only, need to be considered when checking the sign of
3°®. Kotter shows the calculations for a cube with its four space diagonals: a framework
with j = 8 and A = 16, which has one state of self-stress and turns out to be “'rigid™, in spite
of having three distinct infinitesimal inextensional mechanisms.

Kotter comments that his approach could be extended to assemblies with s > | by
considering » functions ®,, cach related to onc p.l!'ti(.uldl' state of sclf-stress, and such that
3, =+ = §°Md, | = 0. The assembly is “rigid™ if §°®, is cither always positive, or always
negative. These remarks are relevant to the present study and, although the practical
implementation of this scheme might prove rather difficult, there are clear similaritics
between Kétter's line of attack and the scheme which we have developed in Sections 2 and
4. Indecd, it might be possible to prove rigorously that our formulation in Scction 2 is, in
cffect, i more general form of Kétter's stability criterion.

We have found only two references to Kotter’s study in the published literature:
Pollaczek-Geiringer (1927) and Levi-Civita and Amaldi (1930). Rather surprisingly, the
latter authors chose to conduct a purcly geometric investigation of the sct of constraint
equations —cach corresponding to a bur—to be satisfied by all inextensional displacements.
Their approach is casier to follow and more general than Kotter's but, for first-order
infinitesimal mechanisms, it results in a quadratic function equivalent to §°® but with 2;
variables instead of just m. Being free from any static considerations, the scheme by Levi-
Civita and Amaldi poses no extra difficulty if s > 1. More recently, Kuznetsov (19754,b)
has reduced the size of the quadratic form used by Levi-Civita and Amaldi (1930) to m
variables only, after noting that an infinitesimal mechanism would be in a state of stable
equilibrium if sclf-stressing forces were introduced in the bars. The resulting scheme is an
up-to-date version of Kdtter's algorithm, with its use in practice being restricted to assembl-
ies with s = 1. Besseling (1979) and Tanaka and Hangai (1986) have followed an approach
based on Lincar Algebra, and hence related to the present study, to derive from a stability
criterion a quadratic form in m variables. A comparison of Kétter's results with subsequent
publications by other authors shows that little progress has been made over the past 75
years, in spite of several, intermittent attempts,

In this paper we have shown that, given an assembly with s (> 0) independent states
of sclf-stress, m (> 0) independent mechanisms forming the matrix D and associated sets
of product-force vectors Py, ..., P,, the mechanisms are first-order infinitesimal if and only
if there exists a set of coeflicients «, for which the quadratic form

ﬂ’(i P,’Dz.-)ﬂ

1=

is positive definite.

SAS 27:4-H
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We have also presented an automatic procedure to search for a set of suitable s,
based on alternate Linear Programming phases and eigenvalue/eigenvector searches. This
algorithm enables us to apply the proposed test to any assembly, but we have pointed out
that for assemblies with s = | a non-iterative procedure can be used instead.

Our method has two obvious advantages over methods proposed previously. First,
our scheme makes use of physically-based quantities, e.g. mechanisms, states of self-stress,
etc. rather than a second-order analysis of constraint equations in the manner of Kuznetsov
(1975a). These elements of the algorithm are directly calculable. and they correspond to
physical quantities which afford greater insight. The scheme for computing mechanisms
and states of self-stress, described in our previous paper, has been extended (Kwan and
Pellegrino. 1989) to structural assemblies which include beams, connected in various ways,
and cables which run over several small frictionless pulleys. In principle, the method
described in this paper can be applied to such assemblies as well. Second. our scheme
provides for assemblies with any number of statical indeterminacies to be analyzed, as in
Levi-Civita and Amaldi (1930) ; however we require much smaller matrices for our analysis.
A further advantage of our calculations is that we obtain, as a by-product, a set of bar
tensions which would provide first-order stiffness against all inextensional modes, if we
were to pre-stress the assembly. This information can be of considerable value in the design
of pre-stressed mechanisms.

Finally. we should note that the use of our sophisticated general algorithm is hardly
justified for the example shown in Fig. 5. It is quite obvious that the configuration shown
is a rather special one, in which s =2 and m = 3, of an assembly which has s = 0 and
m = | in most configurations; Tarnai (personal communication) refers to such special
configurations as “points of bifurcation of compatibility™. Similarly, the ring assembly
shown in Fig. 2 of our previous paper has s = 2 and m = 2 at its point of bifurcation of
computibility, i.c. when the top four bars lic in a vertical plane, although normally s = |
and m = 1. We have not yet found a non-trivial example of a kinematically indcterminate
assembly having s = 2, or greater, which exhibits a “*finite™ mechanism ; and we should be
interested to hear from any readers who know of non-trivial and possibly three-dimensional
examples.
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